Human Coronavirus EMC Does Not Require the SARS-Coronavirus Receptor and Maintains Broad Replicative Capability in Mammalian Cell Lines
نویسندگان
چکیده
A new human coronavirus (hCoV-EMC) has emerged very recently in the Middle East. The clinical presentation resembled that of the severe acute respiratory syndrome (SARS) as encountered during the epidemic in 2002/2003. In both cases, acute renal failure was observed in humans. HCoV-EMC is a member of the same virus genus as SARS-CoV but constitutes a sister species. Here we investigated whether it might utilize angiotensin-converting enzyme 2 (ACE2), the SARS-CoV receptor. Knowledge of the receptor is highly critical because the restriction of the SARS receptor to deep compartments of the human respiratory tract limited the spread of SARS. In baby hamster kidney (BHK) cells, lentiviral transduction of human ACE2 (hACE2) conferred permissiveness and replication for SARS-CoV but not for hCoV-EMC. Monkey and human kidney cells (LLC-MK2, Vero, and 769-P) and swine kidney cells were permissive for both viruses, but only SARS-CoV infection could be blocked by anti-hACE2 antibody and could be neutralized by preincubation of virus with soluble ACE2. Our data show that ACE2 is neither necessary nor sufficient for hCoV-EMC replication. Moreover, hCoV-EMC, but not SARS-CoV, replicated in cell lines from Rousettus, Rhinolophus, Pipistrellus, Myotis, and Carollia bats, representing four major chiropteran families from both suborders. As human CoV normally cannot replicate in bat cells from different families, this suggests that hCoV-EMC might use a receptor molecule that is conserved in bats, pigs, and humans, implicating a low barrier against cross-host transmission. IMPORTANCE A new human coronavirus (hCoV) emerged recently in the Middle East. The disease resembled SARS (severe acute respiratory syndrome), causing a fatal epidemic in 2002/2003. Coronaviruses have a reservoir in bats and because this novel virus is related to SARS-CoV, we investigated whether it might replicate in bat cells and use the same receptor (angiotensin-converting enzyme 2 [ACE2]). This knowledge is highly critical, because the SARS-CoV receptor influenced pathology, and its localization in the deep respiratory tract is thought to have restricted the transmissibility of SARS. Our data show that hCoV-EMC does not need the SARS-CoV receptor to infect human cells. Moreover, the virus is capable of infecting human, pig, and bat cells. This is remarkable, as human CoVs normally cannot replicate in bat cells as a consequence of host adaptation. Our results implicate that the new virus might use a receptor that is conserved between bats, pigs and humans suggesting a low barrier against cross-host transmission.
منابع مشابه
Human Coronavirus EMC Is Not the Same as Severe Acute Respiratory Syndrome Coronavirus
A newly identified betacoronavirus, human coronavirus EMC (HCoV-EMC), has been isolated from several patients with respiratory and renal disease in the Middle East. While only a few infected patients have been identified, the mortality of the infection is greater than 50%. Like its better-known cousin severe acute respiratory syndrome coronavirus (SARS-CoV), HCoV-EMC appears to have originated ...
متن کاملThe Emergence of Human Coronavirus EMC: How Scared Should We Be?
A novel betacoronavirus, human coronavirus (HCoV-EMC), has recently been detected in humans with severe respiratory disease. Further characterization of HCoV-EMC suggests that this virus is different from severe acute respiratory syndrome coronavirus (SARS-CoV) because it is able to replicate in multiple mammalian cell lines and it does not use angiotensin-converting enzyme 2 as a receptor to a...
متن کاملCell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus
UNLABELLED A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce sim...
متن کاملReplicative Capacity of MERS Coronavirus in Livestock Cell Lines
Replicative capacity of Middle East respiratory syndrome coronavirus (MERS-CoV) was assessed in cell lines derived from livestock and peridomestic small mammals on the Arabian Peninsula. Only cell lines originating from goats and camels showed efficient replication of MERS-CoV. These results provide direction in the search for the intermediate host of MERS-CoV.
متن کاملEvolutionary Analysis of Mammalian ACE2 and the Key Residues Involved in Binding to the Spike Protein Revealed Potential SARS-CoV-2 Hosts
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spilled over to humans via wild mammals, entering the host cell using angiotensin-converting enzyme 2 (ACE2) as receptor through Spike (S) protein binding. While SARS-CoV-2 became fully adapted to humans and globally spread, some mammal species were infected back. The present study evaluated the potential risk of mammals...
متن کامل